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Abstract 

Over the years, the popularity of the RDF model being used to represent data 
has increased significantly. This is mainly because it is able to capture and then 
present the information contained in the data in a very structured way. Therefore 
most of the big datasets are represented in the form of an RDF graph in order to 
be visualized and analyzed in a reasonable way. Since the datasets are so huge, 
the problem arises that what is a good starting point to consider when browsing 
the RDF graph. This is where the importance of each node in the graph has to be 
determined in order to separate the important one from the others. For 
determining this importance, we have used the PageRank algorithm and an 
algorithm based on a metric called centrality, where centrality is divided further 
into different categories. These were performed on different datasets with some 
changing parameters. The exact methodology behind each of the methods is 
explained and the results are then discussed. 
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1. Introduction    

This project is an extension of the 'Spark RDF Analyzer' framework which was 
implemented by the previous group last year. The framework is used to analyze 
and extract useful properties from RDF graphs and is graph independent. Along 
with this, the other extension to the application is the creation of an 'RDF 
browser' which would be used to traverse the graph in an ordered way. The 
problem then becomes apparent that what should be the starting points for the 
user to traverse the graph from. This is where our work becomes very important 
and relevant. We use different metrics to determine the importance of the nodes 
in the graph. Without finding these important concepts in the large RDF datasets, 
the nodes in the graph are basically unorganized and unordered. 
 
The first method of ranking the node is based on the concept of centrality which 
states that the more central a node is, the easier it is to reach the rest of the 
graph. Centrality highlights the 'strategic' nodes by defining their importance. A 
simple example is that when a person wishes to explore a city, the person does 
not know where to go and start from. The solution is to start from a central place 
in the city from where the person has the largest number of options in order to 
explore the whole city. The types of centrality measures we have used to 
determine the important nodes are degree and closeness centrality. 
 
Secondly we have used the PageRank algorithm to rank the nodes in the graph. 
The algorithm is based on what was originally described by Larry Page of 
Google. PageRank works by counting the number and quality of edges to the 
node to determine how important it is. 
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2. Centrality 

There were 2 main measures of centrality which were used to calculate the node 
importance; degree centrality and closeness centrality. The measures each 
identify a different node as the ‘most central’ but each of them answers different 
questions.  

2.1 Degree Centrality 

The degree of a resource is the number of resources adjacent to it. The degree 
centrality considers nodes with higher degrees as more central, highlighting the 
local popularity of a node in its neighborhood. Degree centrality is divided further 
into 2 categories:  
 
1) In-Degree:​ For a particular node in the graph, it is a count of the number of 
paths of predicates ending at that node. It can be described as the resources 
which support/influence a particular node. This is calculated by executing the 
following Sark SQL query: 
 
SELECT COUNT(subject) FROM Graph WHERE object = '"​ ​+​ node 
+​ ​"' 
 
2) Out-Degree:​ For a particular node in the graph, it is a measure of the number 
of paths of predicates starting from that node. It can be described as highlighting 
the resources supported by a particular node.It is calculated by executing the 
following Sark SQL query: 
 
SELECT COUNT(object) FROM Graph WHERE subject='"​ ​+​ node 
+​ ​"' 
 
Simply determining the node with the highest in or out degree was not 
informative enough as different datasets would give us different results. For 
example in the case of the sib200 dataset which is a relatively smaller dataset, 
the nodes with highest in degrees were determined to be either “Firefox” or 
“Chrome” with the respective predicate being ‘sib:browser’. But these nodes had 
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0 out degree value so they could not really be considered as a useful start node 
for traversing the RDF graph. 
 
3) Combination of in-degree and out-degree 
 
Our approach was to calculate 4 different values because it is not necessary that 
the node which has highest in-degree also has highest outdegree. So if a node 
has highest out-degree we also calculate its in-degree and vice versa.  
 
The Spark SQL query for calculating the node with the highest out-degree is as 
follows: 
 
SELECT subject,COUNT(object) AS OutdegreeCount FROM 
Graph GROUP BY subject ORDER BY OutdegreeCount DESC 
LIMIT 1 
 
For the resultant node which was returned as a result, we then calculated the 
in-degree for it using the query which was specified earlier. 
 
We then determine the node with the highest in-degree and then calculate the 
out-degree for that particular node.  
 
Finally the following calculations are performed in the specified order: 

1) Sum of the out-degree and in-degree of the highest out-degree node 
2) Sum of the out-degree and in-degree of the highest in-degree node 
3) If the sum in step 1 is greater than that in step 2, we return the highest 

out-degree node as the start node. 
4) If the sum in step 1 is less than that in step 2, we return the highest 

in-degree node as the start node. 
 
By combining both degree values for the particular node, we get more useful 
suggestions for a start node. This is when compared to the ‘browser’ node 
suggestion which was given when only one of the degree types was considered. 
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2.2 Closeness centrality 
 
The second centrality metric which we used to determine the start node for the 
RDF graph is closeness centrality. The closeness centrality of a resource 
represents its capacity to join (and to be reached by) any resource in a network.  
 
For a particular node k, the closeness centrality is the inverse sum of its  
shortest distances to all the other nodes in the graph.  
Where n is the number of nodes and d(k,i) the length of a shortest path from k to 
another node i. Shown by the following formula: 
 

 
 
It should be noted that the interpretation of whether a high or less value 
calculated using the formula means a high or low closeness centrality 
respectively for a particular node depends on the type of graph. That is 
undirected and directed graphs will give different results based on what data is 
being represented in the graph. 
  
Since closeness centrality is based on the shortest paths between the source 
node and all the other nodes in the graph, we first go into detail about shortest 
path algorithms in large graphs. 

3. Shortest path 

To calculate the shortest path between a given pair of nodes, there are 2 
approaches: single source shortest path (SSSP) and all pair shortest path 
(APSP). SSSP involves finding the shortest path from a single source node to all 
other destination nodes. APSP involves finding the shortest path between all the 
pairs of nodes in the graph but due to this it is significantly slower in runtime as 
compared to the single source algorithm. The best case running time for APSP 
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algorithm is O(vertices ^ 2) considering our graph is an unweighted and directed 
graph.  
 
Our approach was to first go about implementing the SSSP algorithm and later 
on enhance it to support APSP. Since the graph we were working on is an 
unweighted directed graph. The approach we took for implementing SSSP was 
using a Breadth First Search (BFS) through Spark Map and Reduce functions.  

3.1 Implementation of SSSP 

For implementing the SSSP algorithm we first wanted to organize our data in 
terms of id’s and relations. This helped us gain more efficiency in terms of using 
nodes with large texts and special characters in terms of ids. To achieve this we 
did two things. 

3.1.1 Unique nodes parquet generation 

The first thing we did was to convert our data into a parquet file called 
UniqueNodes. ​We did this by selecting all distinct nodes from the graph and 
assigning them unique ids. This helped us in getting rid of nodes having long 
texts. For e.g. 
 
"status across Europe. In Germany, the album was certified 4x Platinum, with 
more than 2 million units sold, making it one of the" 
 
We save the resulting data in a parquet file called ​UniqueNodes.parquet​. Which 
helps us easy retrieval of data for all algorithms we will be applying in future.  
 
The following query is used to generate the UniqueNodes for the graph. 
 
SELECT DISTINCT  a.nodes FROM  
(SELECT subject as nodes from Graph  UNION ALL  
 SELECT object as nodes FROM Graph) a) 
.withColumn("id", functions.monotonically_increasing_id() 
 
 
The results are collected in a Dataframe in the following format: 
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- 

 

3.1.2 Relations parquet generation 
After creating the UniqueNodes we also needed one more measure to keep track 
of the relations between the nodes in the graph i.e which object belongs to which 
subject or vice versa. For this we went about generating a relations.parquet file to 
keep track of all the relations with respect to the node ids we generated in the 
previous step.  
 
The query is as follows: 
 
SELECT unSub.id as subId,unObj.id as objId FROM Graph g  
INNER JOIN UniqueNodes unSub ON unSub.nodes=g.subject  
INNER JOIN UniqueNodes unObj ON unObj.nodes=g.object  
WHERE g.subject != g.object 
 
The results are collected in a Dataframe in the following format: 
 

 

3.2 Single Source Shortest Path Algorithm 

The core algorithm for SSSP is implemented in ​SSSP.java​ which is run through 
the ​DataFramePartitionLooper.java(DFPL)​. DFPL is responsible for preparing 
the data structures required to run SSSP. The first thing that DFPL does is create 
an adjacency matrix for the provided graph. It does this by accepting the relations 
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dataframe ( explained in previous section ) and outputting an adjacencyMatrix for 
the graph in the following format. 
 
Tuple4<List<Long>, Integer, Integer, Integer> 
 
Each node has a specific id as key and for each key we maintain a data structure 
called ‘scala tuple’ which can contain a miscellaneous collection of elements. In 
our case we have 4 elements so it is the following form.  
 
1) The first element is a list containing the ids of the immediate neighbours of the 
particular node. 
2) The second integer type element represents the distance from the source 
node. 
3) The third integer type element represents the current status of what action has 
to be taken regarding the node during traversing. Only 3 values (0, 1, and 2) are 
used and each of them relates to the following criteria. 

● 0 means that the node still has to be visited 
● 1 means that the node will be expanded next 
● 2 means node has already been expanded 

4) The fourth integer type element represents the number of shortest paths 
between the source node and current node being considered. 

3.2.1 Example 
The following graph will now be used as a reference for the map and reduce 
phases. Taking node 1 as the source node. 
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Map phase 1 
The map phase of the algorithm consists of multiple steps. 
 
Step 1 
For better understanding, here we are only showing the row with respect to 
node/key 1. But in actual case, these will be the values of row with node 1 
contained in the adjacency matrix.  
 
There are 3 values for a node ​status​ in the data structure.  
 
0 = This node is not reached yet. 
1 = This node needs to be expanded next. 
2 = This node has already been expanded. 
 

Node ID  List of 
neighbours 

Distance Status No. of 
shortest paths 

1 [2,3,4] 0 1 1 
 
Explanation:  

● Node 1 in the graph has nodes 2, 3, 4 as direct neighbours. 
● Distance of node 1 from itself is 0. 
● Status is 1 as node 1 has to be expanded. 
● For this case, the no. of shortest paths is assigned value of 1 by default. 

 
Step 2 
Here we’re showing the complete adjacency matrix and how it will be updated. 
 

Node ID  List of 
neighbours 

Distance Status No. of 
shortest paths 

1 [2,3,4] 0 2 1 

2 Null 1 1 1 

3 Null 1 1 1 
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4 Null 1 1 1 

3 [4,5] 0 0 1 

2 [6] 0 0 1 

6 [5] 0 0 1 

4 Null 0 0 1 

5 Null 0 0 1 
 
Explanation: 

● We expanded the direct neighbors of Node 1 i.e Node 2,3,4 and changed 
the status of node 1 to 2 since it has been now expanded. 

● Node 2,3,4 have not yet been expanded so their status is 1. 
● The distance is incremented by 1. This is done whenever we expand 

nodes. 
● The number of shortest path from node 1 to node 2,3,4 remains 1. 

 
Reduce phase 
After achieving the result from step 2 of map phase, we simply reduce the data 
with the following rules. We will be considering the example of NodeID 2 to 
explain how reduce happens for each column. 
 

1. The first thing we check is the status of the two nodes being reduced. If 
one node has a status of 2 while the other has 1. This means the node 
with status 2 has already been expanded before, hence we directly 
consider the one with status 2 with all it’s values. This ensures shortest 
paths. 

 
2. Now suppose if one node has status 1 while the other has 0. This means 

we’re facing this node for the first time. Hence we consider the 
listOfNeighbors of the node with non null values. We consider the distance 
which is greater among the two. We keep the No. of shortest paths as 
same. 
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After reducing the result from the step 2 of map phase, we get the following data 
structure: 
 

Node ID / key List of 
neighbours 

Distance Status No. of 
shortest paths 

1 [2,3,4] 0 2 1 

2 [6] 1 1 1 

3 [4,5] 1 1 1 

4 [5] 1 1 1 

5 Null 0 0 1 

6 [5] 0 0 1 
 
Map Phase 2 
Step 1 
 

Node id List of 
neighbours 

Distance Status No. of 
shortest paths 

1 [2,3,4] 0 2 1 

2 [6] 1 2 1 

6 Null 2 1 1 
 
Explanation 

● The status of node 2 is 1 so it is expanded next and its status is changed 
to 2. 

● Like the last time, we increment the distance by one for the expanded row 
which gives us a distance of 2 now from the sourceNode 1. 

 
Step 2 
 

Node id List of Distance Status No. of 
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neighbours shortest paths 

1 [2,3,4] 0 2 1 

2 [6] 1 2 1 

6 Null 2 1 1 

3 [4,5] 1 2 1 

4 Null 2 1 1 

5 Null 2 1 1 
 
Explanation 

● The node 3 has status 1 so it is expanded and its status is changed to 2. 
● The neighbours of node 3 are node 4 and 5; they are at a distance of 2 

from the source node 1 and their status is set as 1. 
 
Step 3 
 

Node id List of 
neighbours 

Distance Status No. of 
shortest paths 

1 [2,3,4] 0 2 1 

2 [6] 1 2 1 

6 Null 2 1 1 

3 [4,5] 1 2 1 

4 Null 2 1 1 

5 Null 2 1 1 

4 [5] 1 2 1 

5  Null 0 0 1 

6 [5] 0 0 1 

5 Null 2 1 1 
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Explanation 

● The node 4 has status 1 so it is expanded and its status is changed to 2. 
● The neighbour of node 4 is node 5; the distance from the source node is 2 

and the status is set as 1. 
● It should be noticed that there are 2 entries for node 5 with distance as 2 

meaning that there are 2 shortest paths between node and source node 1 
so in the next phase, the value for the no. of shortest paths for node 5 will 
be increased to 2 (see entry with * in following table). 

 
Reduce phase 2 
 

Node id List of 
neighbours 

Distance Status No. of 
shortest paths 

1 [2,3,4] 0 2 1 

2 [6] 1 2 1 

6 [5] 2 1 1 

3 [4,5] 1 2 1 

4 [5] 1 2 1 

5 Null 2 1 2 ​* 
 
After this step, node 6 will be expanded based on its status of 1 and so on. The 
purpose of showing the computation steps until here were to demonstrate the 
main steps involved in the algorithm. And in the previous reduce phase, the 
specific scenario of a node having more than 1 shortest path was also shown. 

3.2.2 Experiments and Results 
The algorithm was used to calculate the closeness centrality for some random 
nodes and the dataset used was sib200. There were 3 main implementations: 

1) Closeness centrality against whole graph  
2) Closeness centrality for 3 hop neighbourhood 
3) Closeness centrality for 2 hop neighbourhood 
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The results are shown in the following table: 
 

 Closeness centrality value 

Node Whole Graph 3 hop 
neighbourhood 

2 hop 
neighbourhood 

sibpo:po12549 0.016667 0.016667 0.016667 

sibu:u7 0.000000625 0.000000629 0.000001343 

sibc:co27859 0.005587 0.005587 0.011765 

sibu:u154 0.000000614 0.00000062 0.000001467 

sibpha:pa1145 0.000000473 0.000001289 0.000014185 

sibfr:fr1808 0.000000533 0.000000834 0.000003356 

sibfr:fr2870 0.000000529 0.000000884 0.000003705 

sibc:co146175 0.004651 0.004651 0.012658 
 
Analysis 
If we consider the first node ‘po12549’ whose type is post, over 2 hops it has a 
value of 0.016667 which is the largest as compared to the others. This means it 
has the lowest closeness centrality value. The explanation for this is that the final 
value calculated is an inverse of the sum of node distances according to the 
formula specified earlier. So for this node, the total sum being less means that it 
is further away from many of the nodes of the graph and hence it is the least 
central in terms of closeness from among the other nodes. 
 
Consequently if we now consider the node ‘u7’ whose type is user, over 2 hops it 
has the lowest value meaning that it has the highest closeness centrality among 
the other nodes. It has a large value for the sum of the other node distances 
which shows that the ‘u7’ node is near to many of the other nodes of the graph 
hence it is most central in terms of closeness. Being connected and nearer to 
more nodes means that this node has the capacity to receive information flowing 
through the graph very quickly. This also makes sense since a user in a network 
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can be considered to have many connections to diverse entities as compared to 
a single post. 
 
In following table, the percentage change in values of centrality between the 
different hop methods is done: 
 

Node % difference between 3 
hop and whole graph 

% difference between 2 
hop and whole graph 

sibpo:po12549 0.00 0.00 

sibu:u7 0.64 53.46 

sibc:co27859 0.00 52.51 

sibu:u154 0.97 58.15 

sibpha:pa1145 63.30 96.67 

sibfr:fr1808 36.09 84.12 

sibfr:fr2870 40.16 85.72 

sibc:co146175 0.00 63.26 

 Avg: 17.64 Avg: 61.74 
  
Analysis 
It is observed that for the node ‘sibpo:po12549’, the closeness centrality value 
calculated over 2 hops did not change when calculated over 3 hops and whole 
graph. Meaning that all the neighbours for that node were covered over the 2 
hops. For two of the ‘sibc’ nodes, there was no change in value of centrality when 
going from 3 hops to whole graph.  
 
For the rest of the nodes, there was some change in value of centrality from 3 
hops to whole graph but the change was not too significant. In fact for the two 
‘sibu’ nodes representing a user, there was only a 0.64 and 0.94 % change even 
though they would be thought of as nodes with a lot of connections and hence 
paths in the graph. 
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The maximum percentage change when comparing 3 hops against whole graph 
was observed for the ‘sibfr’ nodes and a ‘sibpa’ node. Overall when the 
percentage change in centrality for 3 hops against whole graph for all the eight 
nodes in table was considered by calculating an average, the value came came 
out to be 17.64 %. The significance of this value was made clear when the 
average percentage change in centrality for 2 hops against whole graph was 
calculated to be 61.75 %. 
  
What this means is that in general, calculating the closeness centrality over 3 
hops for the nodes was sufficient. And the values obtained are considered to be 
accurate enough in comparison to the values with respect to the whole graph. 
The difference in values between 2 hops and whole graph then also gives 
credence to obtaining more accurate centrality values over 3 hops. 

3.3 Important Nodes Based on Closeness Centrality 

In order to enable the users to have an alternative way to decide a starting node, 
we found out the nodes with maximum closeness centralities. As explained 
earlier that the closeness centrality of a node k is 1 divided by the sum of k’s 
distance from all the other nodes.  
 
The definition gives us a hint that the most central nodes in the graph will be the 
one which are mostly connected throughout the graph. Suppose we have the 
following two graphs i.e graph 1 and graph 2. 
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If we take a look at graph 1. The sum for the closeness centrality for N1 will be 
calculated in the following manner i.e the shortest path from N1 to all other 
nodes. 
N1 to N2 = 1 
N1 to N3 = 1 
N1 to N4 = 1 + 2 = 3 
N1 to N5 = 1 + 2 = 3 
 
This gives us a total of 8. Hence the centrality for N1 in graph 1 will be 1/8 = 0.25. 
 
In Graph 2, we’ll get the same sum from until N5 but this time we’ve 95 more 
Nodes that needs to be added. This means we’ll calculate the distance of N1 to 
N4 = 3, N1 to N5 = 3 …. N1 to N100 = 3. This will give us a total sum of 201 and 
a centrality of 1/201  = 0.005. 
 
What actually causes the centrality for N1 in graph 2 to increase is node N2 
which has a huge number of outdegree nodes.  
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Now suppose if we have a case where node N3 have 1000 out degree nodes. 
 

 
In this case the centrality for N1 will increase a lot. This means that the more a 
node is connected to other nodes with higher out degree the more central it is. 
Hence we take the same approach and implemented an algorithm that performs 
the following steps. 
 
Step 1 
We select the top 10 nodes in the graph with respect to the highest outdegree. 
We use the following query to return the nodes. 
 
SELECT subject,COUNT(object) as OutDegreeCount  
FROM Graph Group BY subject ORDER BY OutDegreeCount DESC LIMIT 
10 
 
The nodes are then passed to an algorithm that calculates the distance of these 
nodes from the farthest nodes to which they are connected to as objects.  
 
The algorithm was focused and written using DataFrames purely. Let’s take an 
example graph and show how the algorithm works. 
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If you see graph 4, the nodes indicated in red are the ones with highest out 
degrees. Now we’ll go backwards step by step to find the distances of the red 
nodes to the other nodes. We do this using the following steps. 
 
Step 1: 
Get subjects of objects. Initially, our objects are the red nodes. 
 

subject object distance 

3 4 1 

6 5 1 

8 9 1 

10 15 1 
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Step 2: 
Get subjects of subjects retrieved in step 1 and increment the distance by 1. 
 

subject object distance 

2 3 2 

1 6 2 

1 8 2 
 
Step 3: 

1. Join subject of Step 1 DataFrame with Object of Step 2 DataFrame.  
2. Keep the distances of the step 2 DataFrame. 
3. Then union the Step 1 DataFrame to the final result. 

 

DataFrame Step 1 
 

subject object distance 

3 4 1 

6 5 1 

8 9 1 

10 15 1 
 

 DataFrame Step 2 
 

subject object distance 

2 3 2 

1 6 2 

1 8 2 
 

Joined DataFrame 
 

object subject distance 

4 2 2 

5 1 2 

9 1 2 
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Unioned DataFrame 
 

object subject distance 

4 2 2 

5 1 2 

9 1 2 

4 3 1 

5 6 1 

9 8 1 

15 10 1 
 

Now we’ll go back to step 2 and find the subjects of node 1,2 or in other words 
find the subject of nodes with max distance in the Unioned DataFrame. Than we 
repeat step 3 with the result and the last Unioned DataFrame giving us a 
DataFrame containing nodes whose distance is 3 from the red nodes. 
 
Cycles: 
There will be cycles in graph which could cause this algorithm to work in an 
infinite loop. We take care of the cycles in the graph by checking if subject and 
object column of the Unioned DataFrame has multiple entries of the same 
values. If yes we just discard the duplicate entries.  
 
Break Condition: 
The algorithm stops when the number of rows in the unioned DataFrame from 
the last step and current step remains the same. This means that there are no 
further nodes to expand as subjects. 
 
Final Result: 
The final result returned by this algorithm will look something like this. 
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object subject distance 

4 10 4 

9 10 3 

5 10 3 

4 12 3 

4 1 3 

4 2 2 

5 1 2 

9 1 2 

4 3 1 

5 6 1 

9 8 1 

15 10 1 
 

Once we receive the result, we can simply group the nodes by object to find out 
the number of intersections. For example in this table, the node with highest 
intersection will be 10, in other words, the node which has reach to maximum 
number of red nodes is 10. While the second node which has reach to maximum 
number of nodes is 1.  
 
We simply pick the top 10 nodes with highest intersections and feed them into 
the SSSP algorithm (explained above) to find the centralities of the collected 
nodes. This gives us the nodes with the highest closeness centralities in the 
graph. The result is saved in a parquet file as preprocessed data and shown as a 
recommended starting node in the system. 
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4. PageRank 
Pagerank was another method used to calculate the importance of nodes in the 
RDF graph based on the incoming and outgoing links from the node. Pagerank 
specifically considers a node more important if it has incoming links from many 
other nodes. The computation of pagerank is done according to the following 
formula [7]: 
 
PR(A) = (1-d) + d (PR(B1)/C(B1) + ... + PR(Bn)/C(Bn)) 
 
Where: 
PR(A) is PageRank of node A 
PR(Bi) is PageRank of nodes Bi which link to node A 
C(Bi) is number of outgoing links from node Bi 
d is damping factor with range of [0,1] and set to 0.85 in this case  
 
 

                               
 
  ​ Figure: Flowchart showing the sequence of steps to calculate pageranks 
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Implementation 
We’ll use the following graph to explain the algorithm. 
 

 
 
Step 1: Creation of adjacency matrix 
The structure is in the following format: 
Node, [list of nodes being pointed to], 1/no. of outgoing links, rank 
 
In the initial step, the rank of each node is set as the number of outgoing links of 
that particular node. This is shown in the following figure: 
 

key neighbors Pj or 1/n rank 

1 [2,3,4] ⅓ = 0.3333 3 

2 [1,5] ½ = 0.5 2 

3 [1,2,4,5] ¼ = 0.25 4 

4 [1,2] ½ = 0.5 2 

5 [2,3,4] ⅓ = 0.3333 3 
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Step 2: Calculate Inverted Adjacency Matrix 
Since pageRank calculates the nodes importance by considering all nodes 
providing their importances as in-degrees to a particular node. We calculate the 
inverted adjacency matrix to figure out which nodes a pointing to a particular 
node. 
 
Step 2.1 : Reshuffler operation 
The reshuffler maps the keys to the neighbors column while flatMapping the 
neighbors column to become keys. This helps us identify which nodes are being 
pointed out by which nodes. This is shown in the following figure:  
 
Note that this step is only shown for nodes 1, 4 for the sake of simplicity. 
 

key neighbors Pj or 1/n rank 

2 1 ⅓ = 0.3333 3 

3 1 ⅓ = 0.3333 3 

4 1 ⅓ = 0.3333 3 

1 4 ½ = 0.5 2 

2 4 ½ = 0.5 2 
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Step 2.2: Reduce phase 
The reduce phase is performed on the output of step 2.1 which gives us the final 
result in the following format. 
 

key neighbors Pj or 1/n rank 

2 [1,4] [0.3333,0.5] [3,2] 

3 [1] [0.3333] [3] 

4 [1] [0.3333] [3] 

1 [2] [0.5] [2] 
 
Note in the above diagram. It means node 1,4 are pointing to node 2.  
 
Step 3: Calculate new ranks 
Use the pagerank formula to calculate the new rank for each node for example 
the calculation is applied to values for node 1 in step 2 as follows: 
 
NewRank = 0.85* ((0.50*2) + (0.25*4) + (0.50*2) + 0.15 
 
The node and its respective rank are then combined in the following structure: 
Node, NewRank 
 
Step 4: Reshuffle the structure in step 2 
The following structure was obtained as output of step 2: 
node1,([node2,node3,node4],[0.50,0.25,0.50],[2,4,2]) 
 
This is now reshuffled the same way as in step 2.1 by making the node’s 
neighbours as the key against the actual node and shown as follows: 
 
Node2 , Node1 , 0.5, 2 
Node3 , Node1 , 0.25, 4 
Node4 , Node1, 0.5, 2 
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Step 5: Join output of step 3 and 4 
 
Node2 , Node1 , 0.5 Node2, NewRank1 
Node3 , Node1 , 0.25 Node3, NewRank2 
Node4 , Node1, 0.5 Node4, NewRank3 
  

                                 
 

            ​Node2 , Node1, 0.5, NewRank1 
                           Node3 , Node1, 0.25, NewRank2 

              Node4 , Node1, 0.5, NewRank3 
 
Step 6: Goto Step 2 
Reduce step is performed on the output of step 7 and the following structure is 
obtained: 
 
Node1 , [Node2,Node3,Node4], [ 0.5,0.25,0.5 ], [ NewRank1, NewRank2, 
NewRank3] 
 
Now the new ranks are calculated again as demonstrated before in step 3 and 
the procedure is continued. 
  
When this algorithm is run for a particular graph, the results which include the 
nodes and their importance in form of the pagerank value, at the end are stored 
in a parquet file.  
 
Break Condition: 
In order for the algorithm to decide when to stop. We implemented a break 
condition which calculates the percentage change in the total sum of the ranks 
from the previous step. The threshold can be set manually by the user. By default 
we set the threshold to 5%. This means if there is a less than 5% change in the 
ranks from the previous step the algorithm stops, organizes the data and 
provides us with a pageRank parquet file. 
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The break condition is calculated using the following formula:

 
Where the ‘percentageDecrease’ value is checked against our defined threshold 
to decide whether to continue running or stop​. 

5. Merging with RDF browser 

After running the pagerank and closeness algorithms on the graph of a particular 
dataset, the final output was in the form of a number of top nodes based on their 
importance values. This data then formed the base for a functionality of the RDF 
browser which was developed side by side along with our implementation. The 
purpose of the RDF browser was to enable the user to browse a RDF graph 
representing a large dataset by traversing it through a click-based interface. One 
of  the challenges of this implementation was to provide a starting/entry point for 
the user to start traversing the graph from. 
 
This is where our work was used in that the most important nodes computed by 
each algorithm are used to provide starting points for a particular graph. The 
computation is not done at runtime instead the nodes and their importance are 
precomputed and the top results are then stored in a parquet file in the Hadoop 
Distributed File System (HDFS). This data is then accessed by the application 
and the results are shown below in figure a, where the top twelve entry points for 
the graph based on the pagerank values are displayed to the user. 

 
Figure a 

31 



6. Summary and Conclusion    
The main motivation behind this project was to determine a series of starting 
nodes for an RDF graph based on their importance. We have achieved this by 
implementing algorithms based on the concepts of centrality and pagerank. For 
centrality, the two measures used were degree centrality and closeness centrality 
with closeness the more intuitive of the two. To calculate closeness centrality, the 
approach was to calculate the single source shortest path using breadth first 
search with spark map and reduce functions.  
 
The second approach was based on the knowledge of a node connected to other 
nodes with higher out degree being more central hence those nodes could be 
pinpointed as have more importance. The other main algorithm was pagerank 
which was also implemented using mapreduce.  
 
Some previous work regarding calculating centrality metrics was done by 
Guillaume Ereteo and co. [1][2] by defining SPARQL extensions. The was done 
mainly for analysis of social networks. The metrics were computed for specific 
predicates meaning that the knowledge of the dataset beforehand was needed 
whereas in our case, we calculated the centralities irrespective of the predicate 
so our implementation was graph independent. 
 
Some future work regarding this would be the computation of shortest path using 
the all pair shortest path algorithm. But as discussed earlier, the running time for 
this algorithm is a factor which has to be considered. This algorithm can then be 
used to calculate another measure of centrality called betweenness centrality. 
Betweenness centrality highlights an important node by focusing on the capacity 
of the node to be an intermediary between any two other nodes. Just like 
closeness centrality, it requires the computation of shortest paths. The major 
difference is that the shortest paths have to determined for each pair of nodes in 
the graph and the number of those paths which pass through a particular node in 
order to calculate its betweenness. 
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